Research on Magnetic Property of Nd2Fe14B/α-Fe Nanocomposite Under Different Roller Speeds

نویسندگان

  • Maoyuan Liu
  • Lei Chen
چکیده

Nano-composite permanent magnetic material is a new type permanent magnetic material, and it is the synthesis of soft and hard magnetic phase within nanoscale. On the basis of exchange coupling hard magnetizing theory, nano-composite permanent magnetic material can at the same time have high residual magnetization intensity of soft magnetic phase and high coerccivity of hard magnetic phase, and is expected to develop into new generation high performance permanent magnetic material. Nevertheless, magnetic energy product of nano-composite permanent deriving from experiment differs greatly from theoretic value, and this is mainly due to fairly great difference between microstructure of material and theoretical model. In this paper, the constituent is taken as (Nd, Pr, Dy)2(Fe, Nb)14B/α-Fe, the fusant rapid quenching method is adopted to research the impact of different roller speeds to magnetic property, through result of VSM, XRD and SPM, magnetic property, phase composition and micro structure of alloy are analyzed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INFLUENCE OF HEATING RATE ON MICROSTRUCTURE AND MAGNETIC PROPERTIES OF Fe3B/Nd2Fe14B NANOCOMPOSITE MAGNETS

The nanocomposite magnet, which is composed of exchange coupled nanocrystalline soft (Fe3B, α-Fe) and hard (Nd2Fe14B) magnetic phases, was first reported by Coehoorn et al. [1], and the theoretical basis of it was reported by Kneller and Hawig [2]. Nd-Fe-B based nanocomposite magnet has attracted considerable research interest due to its excellent magnetic properties with relatively low amount ...

متن کامل

Effect of selective Co addition on magnetic properties of Nd2(FeCo)14B/-Fe nanocomposite magnets

Nd2Fe14B/α-Fe-based hard/soft nanocomposite magnets with Co addition have been prepared by ball-milling and warm compaction. It was found that Co addition into the magnetically hard phase improves magnetic properties significantly, especially the remanence ratio and coercivity. The effect on the magnetic properties of the selective Co addition may be attributed to enhanced interdiffusion across...

متن کامل

Atom Probe Studies of Nanocrystallization of Amorphous Alloys

The nanocrystallization processes in Fe-Si-B-Nb-Cu and Fe-Nd-B(-Cu-Nb) amorphous alloys have been studied by transmission electron microscopy (TEM) and a three dimensional atom probe (3DAP). Cu additions are effective in refining the nanocrystalline microstructures of an Fe74.5Si13.5B8Nb3Cu1 alloy and an Fe3B/Nd2Fe14B nanocomposite microstructure. This is because Cu atoms form a high density of...

متن کامل

Magnetic properties of Nd-Fe-B/α-Fe multi-layered thick film magnets

Nd-Fe-B/α-Fe multi-layered nanocomposite film-magnets were prepared from a rotating Nd2.6Fe14B/α-Fe composite target by the pulse laser deposition method with a NdYAG laser (λ=355 nm). The prepared film-magnets were composed of approximately 800 layers with the thickness of about several tens nanometre, and exhibited hard magnetic properties after annealing. The laser power for the ablation of ...

متن کامل

Synthesis of Magnesium Ferrite-Silver Nanostructures and Investigation of its Photo-catalyst and Magnetic Properties

In this research we first synthesized MgFe2O4 nanostructures via hydrothermal method using (Mg(NO₃)₂.6H₂O) and (Fe(NO₃)₃.9H₂O). The influence of concentration, surfactant, precipitating agent and temperature on the particle size and magnetic properties of the synthesised nanoparticles were examined. Then MgFe2O4-Ag nanocomposites were prepared by a simple chemical precipitation. The structural ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015